Cостав белков: какие элементы входят, определение, строение

cостав белков: какие элементы входят, определение, строение

Среди органических веществ белки, или протеины, — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. На их долю приходится 50 — 80% сухой массы клетки.

Молекулы белков имеют большие размеры, поэтому их называют макромолекулами. Кроме углерода, кислорода, водорода и азота, в состав белков могут входить сера, фосфор и железо. Белки отличаются друг от друга числом (от ста до нескольких тысяч), составом и последовательностью мономеров. Мономерами белков являются аминокислоты (рис. 1)

Бесконечное разнообразие белков создается за счет различного сочетания всего 20 аминокислот. Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде:

cостав белков: какие элементы входят, определение, строение

Молекула аминокислоты состоит из двух одинаковых для всех аминокислот частей, одна из которых является аминогруппой (—NH2) с основными свойствами, другая — карбоксильной группой (—COOH) с кислотными свойствами. Часть молекулы, называемая радикалом (R), у разных аминокислот имеет различное строение.

Наличие в одной молекуле аминокислоты основной и кислотной групп обусловливает их высокую реакционную способность. через эти группы происходит соединение аминокислот при образовании белка. При этом возникает молекула воды, а освободившиеся электроны образуют пептидную связь. Поэтому белки называют полипептидами.

cостав белков: какие элементы входят, определение, строение

Молекулы белков могут иметь различные пространственные конфигурации, и в их строении различают четыре уровня структурной организации.

Последовательность аминокислот в составе полипептидной цепи представляет первичную структуру белка. Она уникальна для любого белка и определяет его форму, свойства и функции.

Большинство белков имеют вид спирали в результате образования водородных связей между —CO- и —NH- группами разных аминокислотных остатков полипептидной цепи.

Водородные связи малопрочные, но в комплексе они обеспечивают довольно прочную структуру. Эта спираль — вторичная структура белка.

Третичная структура — трехмерная пространственная «упаковка» полипептидной цепи. В результате возникает причудливая, но для каждого белка специфическая конфигурация — глобула. Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот.

Четвертичная структура характерна не для всех белков. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул белка.
Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам.

Нарушение природной структуры белка называют денатурацией. Она может происходить под воздействием температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остается в виде полипептидной цепи.

Этот процесс частично обратим: если не нарушена первичная структура, то денатурированный белок способен восстанавливать свою структуру. Отсюда следует, что все особенность строение макромолекулы белка определяются его первичной структурой.

  • Кроме простых белков, состоящих только из аминокислот, есть еще и сложные белки
  • Другие заметки по биологии

Источник: http://edu.glavsprav.ru/info/stroenie-belkov

Все о белках в организме: строение, состав, свойства и прочие характеристики

Человеческий организм состоит из огромного разнообразия химических элементов, среди них аминокислоты, белки, жиры и углеводы. Чтобы понять, как протекают некоторые процессы в организме, необходимо разобраться, что такое белки и какова их структура.

Какие вещества называют белками, или протеинами

Протеин, или белок — это одно из важнейших соединений в организме человека, без которого невозможно представить себе процесс пищеварения и жизнедеятельности. Имеет огромное значение для набора мышечной массы,

cостав белков: какие элементы входят, определение, строение

Что такое белок

Протеины классифицируют по типу происхождения:

  • растительные — усваиваются на 20–40 процентов;
  • животные — процент усвоения от 60 до 90 по причине схожести с человеческими.

Выясняя, какие вещества называются белками или протеинами, следует знать, что между ними практически нет разницы, это схожие элементы, имеющие одну идентичную структуру.

 Белками являются полимерные молекулы, которые выстроены в цепи повторяющихся мономерных звеньев или же из менее крупных элементов, состоящих из аминокислот. Такие субединицы соединяются пептидной связью в определённой последовательности.

Протеины — это простые белки, а сложные носят название протеиды.

Полезная информация! Протеины — это те белки, молекулы которых содержат в себе лишь белковые составляющие. При полном гидролизе протеинов образуются аминокислоты.

Строение белков, их функции, свойства, химический состав

Белки относятся к классу высокомолекулярных органических веществ. Они состоят из аминокислот и составляют половину от сухой массы всех живых организмов.

Состав и строение белков, как было сказано выше, связано с аминокислотами, с их аминогруппой и кислотной карбоксильной группой. При их взаимодействии образуется пептидная связь.

Именно поэтому белки иногда могут называть полипептидами. Строение включает в себя несколько белковых структур.

Структуры:

  • первичная — аминокислотная цепочка с сильной ковалентной связью. Чередуя каждые 20 аминокислот в разном порядке, можно сформировать множество разных белков. Функции и строение изменятся, если поменять хоть одну аминокислоту. По этой причине первичная структура является наиболее важной;
  • вторичная — спиралевидная структура с более слабыми водородными связями;
  • третичная — шаровидная форма (глобула), тут есть 4 вида связей — слабые ионные, гидрофобные и водородные, одна сильная — дисульфидная.
  • четвертичная есть не во всех белках, заключает в себе несколько глобул с теми же связями, что и третичная структура. Пример таких белков — гемоглобин.

cостав белков: какие элементы входят, определение, строение

Количество белка в организме

Из чего состоят белки:

  • углерод — 50 процентов;
  • кислород — 22 процента;
  • азот — 16 процентов;
  • водород — 7 процентов;
  • сера — 0,4-2,5 процента.

Химический состав белков включает также фосфор, железо, йод, медь, макровещества и микровещества. Помимо этого, процентное соотношение показателей может варьироваться в различных белках. Постоянством отличается лишь показатель азота — практически всегда в районе 16 процентов.

Полезная информация! Название «белок» происходит от их свойства при нагревании становиться белыми. Общая формула белков характеризуется общей формулой аминокислот, входящих в их состав и выглядит так: [H₂N-RCOO-NH-R’COO-NH-].

Функции:

  • ферментативная или же каталитическая. Характеризуется комплементарностью и специфичностью, белки-ферменты повышают скорость течения химических реакций;
  • защитная — поддержка иммунитета, антитела сражаются с возбудителями болезней;
  • строительная или же структурная — клетка, как основная структурная единица, состоит (помимо воды) из белка.

Физические свойства белков:

  • глобулярные (растворимость). Растворяясь в воде, образуют коллоидные растворы (казеин, альбумин и другие);
  • фибриллярные — нерастворимы в воде (кератин, коллаген).

Такая характеристика белков, как гидратация также имеет большое значение и представляет собой связывание воды. Данный процесс определяется набуханием белков, они увеличиваются в размере и массе. Отмечается частичное растворение элементов. Ещё одним физико-химическим свойством является ионизация. Ионизация молекул качественно схожа с ионизацией аминокислот.

Но в количественном отношении у белков есть большее количество групп, способных к ионизации. В аспекте ионизации необходимо взять в работу и такое понятие, как изоэлектрическая точка. Краткое определение данного понятия звучит примерно так — кислотность среды (Ph). Эта точка показывает значение, при котором молекула переходит в электронейтральный статус.

У белков есть еще роль буферной системы. Альбумин представляет собой роль буфера, так как обладает амфотерными свойствами. Вклад альбуминов в буферизацию плазмы крови составляет приблизительно 5 процентов.

Интересно знать! Коллаген при взаимодействии с водой обладают высокой вязкостью. При нагревании соединения сворачиваются, поэтому не имеют температуры кипения и плавления.

Также полезно знать, какие бывают белки:

  • пепсин. Присутствует в составе желудочного сока, может запустить процесс разрушения других элементов в ходе пищеварения;
  • интерферон активно применяется при лечении гриппа и насморка, так как способен устранять вредоносные элементы, вызывающие эти болезни.

В состав белков входят остатки различных аминокислот. Обширный надмолекулярный белковый комплекс представляет собой самоорганизующуюся систему. Роль и биологическая ценность таких соединений жизненно важны. Значительную работу белок выполняет при построении клеток тканей различных органов.

Важную роль выполняет и при образовании природных ферментов, большей части гормонов, гемоглобина и многих других органических элементов. Следовательно, белки можно назвать одним из незаменимых материалов организма.

Они защищают его от вредоносных инфекций, помогают при усвоении витаминов, минеральных веществ.

Схема переваривания в желудочно-кишечном тракте

В ходе переваривания происходит гидролиз пищевых белков до свободных аминокислот. Расщепление до аминокислот начинается в желудке, затем продолжается в двенадцатиперстной кишке.

Финальная стадия происходит в тонком кишечнике. В некоторых случаях процесс распада и переформирования в аминокислоты может проходить и в толстом кишечнике под влиянием микрофлоры.

В тонком кишечнике процесс переваривания проходит под влиянием ферментов пептидгидролаз.

Внимание! Согласно изучениям биохимиков, альтернативным названием пептидгидролаз является пептидаз. И основные пептидазы синтезируются в клетках самого желудка, поджелудочной железы и кишечника.

В желудке белки, которые были  получены с продуктами, денатурируются и гидролизуются, впоследствии образуя  олигопептиды.

  В кишечнике панкреатические пептидгидролазы продолжают процесс гидролиза полученных олигопептидов, образуются дипептиды и трипептиды, свободные кислоты.

Короткие пептиды распадаются до свободных аминокислот в клетках кишечного эпителия и в пристеночном слое, после чего происходит процесс всасывания.

Колориметрический метод определения концентрации

В ходе изучения истории открытия белков, их влияния на процессы жизнедеятельности, а также их определения в лекарственных средствах и применения их при различных заболеваниях, было разработано несколько научно-исследовательских методов. Для определения количества белка используют колориметрические и спектрофотометрические методы, которые могут определить химические микроэлементы по содержанию общего азота в лекарственных препаратах.

cостав белков: какие элементы входят, определение, строение

Функции белков

Перед началом колориметрического исследования конструируют калибровочный график с использованием стандартного шаблона белка (аминокислоты тирозина, бычий сывороточный альбумин, сывороточный альбумин человека). Хоть он и не является элементарным способом исследований, но очень полезен при выявлении точных показателей.

Виды:

  • определение с биуретовым реактивом. Этот метод базируется на образовании комплекса двухвалентной меди с пептидными связями молекулы белка в щелочной среде фиолетового цвета;
  • микроопределение с реактивом Бенедикта. Принцип данного исследования схож с методом, предполагающим использование биуретового реактива;
  • определение органических соединений по методу Лоури. Наиболее распространённый метод с применением реактива Фолина;
  • определение органических соединений по методу Лоури в версии Сяткина. Проводится такая презентация для того, чтобы определить элементное содержание белка в медикаментах с повышенным содержанием липопроетидов и гликопротеидов.

Интересно знать! При определении белка в лабораторных пробах используют условия проведения реакций и измерения поглощения растворов, идентичные тем, что применяются при построении калибровочного графика.

Разрушение природной структуры белка

Разрушение природной структуры белка называют денатурацией. В процессе денатурации происходит изменение нативной конформации белковой молекулы под действием различных факторов (в большинстве случаев дестабилизирующих). Потеря природных и нативных свойств сопровождается разрушением четвертичной, третичной и даже иногда вторичной белковой структуры.

Читайте также:  Стоит ли употреблять протеин: плюсы и минусы

Белки являются одними из основных высокомолекулярных органических веществ. Они выполняют целый ряд важнейших функций в организме.

Всем худеющим надо знать, что при сбрасывании лишних килограммов следует быть крайне осторожным с содержанием белка в рационе.

Обычно спортсмены используют диеты с комбинированием продуктов, содержащих количество протеинов, а также используют различные добавки. Составлять такое меню стоит всё же совместно с профессиональными тренерами и диетологами.

Источник: https://calenda.ru/poxudenie/chto-takoe-belki.html

Строение белков. Структуры белков • биология-в.рф

Строение белков. Структуры белковcостав белков: какие элементы входят, определение, строение

Структуры белков: первичная, вторичная, третичная и четвертичная

Название «белки» происходит от способности многих из них при нагревании становиться белыми. Название «протеины» происходит от греческого слова «первый», что указывает на их важное значение в организме. Чем выше уровень организации живых существ, тем разнообразнее состав белков.

Белки образуются из аминокислот, которые соединяются между собой ковалентной – пептидной связью: между карбоксильной группой одной аминокислоты и аминогруппой другой. При взаимодействии двух аминокислот образуется дипептид (из остатков двух аминокислот, от греч. пептос – сваренный).

Замена, исключение или перестановка аминокислот в полипептидной цепи вызывает возникновение новых белков. Например, при замене лишь одной аминокислоты (глутамина на валин) возникает тяжелая болезнь – серповидно-клеточная анемия, когда эритроциты имеют другую форму и не могут выполнять свои основные функции (перенос кислорода).

При образовании пептидной связи отщепляется молекула воды. В зависимости от количества аминокислотных остатков выделяют:

олигопептиды  (ди-, три-, тетрапептиды и т. п.) – содержат до 20 аминокислотных остатков;

  • полипептиды – от 20 до 50 аминокислотных остатков;
  • белки – свыше 50, иногда тысячи аминокислотных остатков
  • По физико-химическим свойствам различают белки гидрофильные и гидрофобные.
  • Существуют четыре уровня организации белковой молекулы – равноценные пространственные структуры (конфигурации, конформации) белков: первичная, вторичная, третичная и четвертичная.

Первичная структура

Первичная структура белков является простейшей. Имеет вид полипептидной цепи, где аминокислоты связаны между собой прочной пептидной связью. Определяется качественным и количественным составом аминокислот и их последовательностью.

Вторичная структура

Вторичная структура образована преимущественно водородными связями, которые образовались между атомами водорода NH-группы одного завитка спирали и кислорода СО-группы другого и направлены вдоль спирали или между параллельными складками молекулы белка.

Белковая молекула частично или целиком скручена в α-спираль или образует β-складчатую структуру. Например, белки кератина образуют α-спираль. Они входят в состав копыт, рогов, волос, перьев, ногтей, когтей. β-складчатую имеют белки, которые входят в состав шелка. Извне спирали остаются аминокислотные радикалы (R-группы).

Водородные связи значительно более слабые, чем ковалентные, но при значительном их количестве образуют довольно прочную структуру.

Функционирование в виде закрученной спирали характерно для некоторых фибриллярных белков – миозин, актин, фибриноген, коллаген и т. п.

Третичная структура

Третичная структура белка. Эта структура постоянна и своеобразна для каждого белка. Она определяется размером, полярностью R-групп, формой и последовательностью аминокислотных остатков. Полипептидная спираль закручивается и укладывается определенным образом.

Формирование третичной структуры белка приводит к образованию особой конфигурации белка – глобулы (от лат. globulus – шарик). Его образование обуславливается  разными типами нековалентных взаимодействий: гидрофобные, водородные, ионные.

Между остатками аминокислоты цистеина возникают дисульфидные мостики.

Гидрофобные связи – это слабые связи между неполярными боковыми цепями, которые возникают в результате взаимного отталкивания молекул растворителя. При этом белок скручивается так, что гидрофобные боковые цепи погружены вглубь молекулы и защищают ее от взаимодействия с водой, а снаружи расположены боковые гидрофильные цепи.

Третичную структуру имеет большинство белков – глобулины, альбумины и т. п.

Четвертичная структура

Четвертичная структура белка. Образуется в результате объединения отдельных полипептидных цепей. В совокупности они составляют функциональную единицу. Типы связей разные: гидрофобные, водородные, электростатические, ионные.

Электростатические связи возникают между электроотрицательными и электроположительными радикалами аминокислотных остатков.

Для одних белков характерно глобулярное размещение субъединиц – это глобулярные белки. Глобулярные белки легко растворяются в воде или растворах солей. К глобулярным белкам принадлежит свыше 1000 известных ферментов.

К глобулярным белкам относятся некоторые гормоны, антитела, транспортные белки.

 Например, сложная молекула гемоглобина (белка эритроцита крови) является глобулярным белком и состоит из четырех макромолекул глобинов: двух α-цепей и двух β-цепей, каждая из которых соединена с гемом, содержащим железо.

Для других белков характерно объединение в спиральные структуры – это фибриллярные (от лат. fibrilla – волоконце) белки. Несколько (от 3 до 7) α–спиралей свиваются вместе, подобно волокнам в кабеле. Фибриллярные белки нерастворимы в воде.

Белки делят на простые и сложные.

Простые (протеины)

Состоят только из остатков аминокислот. К простым белкам относят глобулины, альбумины, глутелины, проламины, протамины, пистоны. Альбумины (например, альбумин сыворотки крови) растворимы в воде, глобулины (например, антитела) нерастворимы в воде, но растворимы в водных растворах некоторых солей (хлорид натрия и т. п.).

Сложные (протеиды)

Включают в состав, кроме остатков аминокислот, соединения другой природы, которые называются простетическою группой.

Например, металлопротеиды – это белки, содержащие негеминовое железо или связанные атомами металлов (большинство ферментов), нуклеопротеиды – белки, соединенные с нуклеиновыми кислотами (хромосомы и т. п.), фосфопротеиды –белки, в состав которых входят остатки фосфорной кислоты (белки яичного желтка и т. п.

), гликопротеиды –белки в соединении с углеводами (некоторые гормоны, антитела и т. п.), хромопротеиды – белки, содержащий пигменты (миоглобин и т. п.), липопротеиды – белки, содержащие липиды (входят в состав мембран).

Молекулярный уровеньУровни организации живого

Источник: https://xn—-9sbecybtxb6o.xn--p1ai/obshchaya-biologiya/stroenie-belkov-struktury-belkov/

Строение и функции белков

Определение 1

Белки – сложные органические соединения (биополимеры), в состав молекул которых входят углерод, водород, кислород и азот (иногда серы). Их мономеры — аминокислоты.

Белки играют первостепенное значение в жизни всех организмов. Они характеризуются неисчерпаемым разнообразием, которое одновременно очень специфично.

Замечание 1

Белки и нуклеиновые кислоты являются материальной основой всего богатства организмов окружающей среды. Их доля составляет 50 – 80% сухой массы клетки.

Молекулы белков похожи на длинные цепи, состоящие из 50 – 1500 остатков аминокислот, соединённых крепкой ковалентной азотно-углеродной (пептидной) связью. В результате образуется первичная структура белка — полипептидная цепь.

Замечание 2

Молекула белка — это полипептид, молекулярная масса которого составляет от 5 тыс. до 150 тыс. Бывает и больше.

Простые белки состоят лишь из аминокислот, а сложные белки, кроме аминокислот, могут содержать нуклеиновые кислоты (нуклеопротеиды), липиды (липопротеиды), углеводы (гликопротеиды), окрашенные химические соединения (хромопротеиды) и т.п.

cостав белков: какие элементы входят, определение, строение

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Все свойства клетки (химические, морфологические, функциональные) зависят от специфических белков, содержащихся в ней.

Замечание 3

Именно набор аминокислот, их количество и последовательность расположения в полипептидной цепи и определяет специфичность белка.

Замена лишь одной аминокислоты в составе белковой молекулы или изменение последовательности расположения аминокислот может привести к изменению функций белка.

Этим и объясняется большое разнообразие в строении белковой молекулы первичной структуры.

Потому не удивительно, что живой организм, чтобы иметь возможность выполнять свои функции, использует особенный виды белков и его возможности в этом отношении неограниченные.

Пространственное расположение полипептидных цепей также определяет свойства белков. В живой клетке полипептидные цепи скрученные или согнутые, имеют вторичную или третичную структуру.

Вторичная структура представлена спирально закрученной белковой цепочкой. Витки спирали удерживаются благодаря водородным связям, образующимся между расположенными на соседних витках СО – и NH – группами.

В результате дальнейшего закручивания спирали возникает специфическая конфигурация каждого белка — третичная структура. Образуется она благодаря связям между белковыми радикалами аминокислотных остатков:

  • ковалентным дисульфидным (S – S-связям) между остатками цистеина,
  • водородным,
  • ионными.
  • гидрофобным взаимодействиям.

В количественном соотношении наиболее важными являются гидрофобные взаимодействия, вызванные тем, что неполярные боковые цепи аминокислот стремятся объединиться друг с другом, не смешиваясь с водной средой. Белок при этом свёртывается так, чтобы его гидрофобные боковые цепи были спрятаны внутри молекулы, то есть защищены от контакта с водой, а наружу, наоборот, выставлены боковые гидрофильные цепи.

Для каждого белка специфичны количество молекуламинокислот с гидрофобными радикалами и количество молекул цистеина и характер их взаимного расположения в полипептидной цепи.

Взаимное расположение групп атомов, обходимое для проявления активности белка как катализатора, его гормональных функций и др. обеспечивается сохранением определённой формы молекулы. Потому стойкость макромолекул – не случайное свойство, а один из важнейших способовстабилизации организма.

Биологическая активность белка может проявлятся лишь когда он имеет третичную структуру, потому при замене в полипептидной цепи даже одной аминокислоты могут возникнуть изменения в конфигурации белка, а его биологическая активность снизится или же исчезнет совсем.

Иногда две, три, и больше белковых молекул с третичной структурой могут объединиться в единый комплекс. Подобные образования являются четвертичной структурой белка.

Пример 1

Примером такого сложного белка является гемоглобин, который состоит из четырёх субединиц и небелковой части – гема. Он способен выполнять свои функции только в такой форме.

В четвертичной структуре белковые субединицы не связаны химически, однако вся структура достаточно крепкая благодаря действию слабых межмолекулярных сил.

Под влиянием разнообразных физических и химических факторов (обработка щелочами, кислотами, спиртом, ацетоном, влияние высоких температур и давления и пр.) третичная и четвертичная структуры белка изменяются, потому что разрываются водородные и ионные связи.

Определение 2

Денатурация – нарушение естественной (нативной) структуры белка.

При денатурации уменьшается растворимость белков, изменяется форма и размеры молекул, теряется ферментативная активность и т.п. Процесс денатурации оборотный, то есть возвращение нормальных условий сопровождается непроизвольным оновлением естественной (природной) структуры белка. Этот процесс называют ренатурацией.

Замечание 4

Все особенности строения и функционирования белковой макромолекулы зависят от его первичной структуры.

Функции белков в клетке

  • Строительная (пластическая) функция белковых молекул является одной из важнейших.Они являются составным компонентом клеточных мембран и органел. Стенки кровеносных сосудов, сухожилия, хрящи высших животных также состоят в основном из белка.
  • Двигательная функция обеспечивается особенными сократительными белками, благодаря которым осуществляются движения жгутиков и ресничек, перемещение хромосом во время деления клеток, сокращение мускулатуры, движения органов растений и т.п., пространственные изменения положения различных структур организма.
  • Транспортная функция белков обеспечивается их способностью связывать и переносить с течением крови химические соединения.
Читайте также:  Пептиды ghrp-6: как принимать, дозировка, действие и совмещение

Пример 2

Белок крови гемоглобин переносит кислород из лёгких в клетки других органов и тканей (аналогичную функцию в мышцах выполняет миоглобин).

Белки сыворотки крови переносят липиды и жирные кислоты, различные биологически активные вещества.

Молекулы белков, входящих в состав плазматической мембраны, берут участие в транспорте веществ как в клетку, так и из неё.

Белки выполняют и защитную функцию. Как ответ на проникновение внутрь чужеродных веществ (антигенов – белков или высокомолекулярных полисахаридов бактерий, вирусов) в клетке вырабатываются особенные белки – иммуноглобулины (антитела), которые нейтрализуют чужеродные вещества и осуществляют иммунологичную защиту организма.

Благодаря функционированию иммунной системы организма обеспечивается распознавание антигенов антигенным детерминантам (характерным участкам их молекул). Благодаря этому специфически связываются и обеззараживаются чужеродные вещества за.

Замечание 5

Внешнюю защитную функцию могут выполнять также и белки, токсические для других организмов ( белок яда змей).

Белкам свойственна также сигнальная функция. В поверхность клеточной мембранны встроены молекулы белков, которые в ответ на действия факторов внешней среды способны к изменению свей третичной структуры. Так происходит восприятие сигналов из внешней среды и передача команд в клетку.

Регуляторная функция свойственна белкам-гормонам, которые влияют на обмен веществ. Гормоны поддерживают постоянную концентрацию веществ в крови, учавствуют в росте размножении и других жизненно важных процессах.

Пример 3

Одним из наиболее известных гормонов является инсулин, понижающий содержание сахара в крови. В случае стойкой недостаточности инсулина содержание сахара в крови увеличивается и развивается сахарны диабет. Главными регуляторами биохимических процессов в организме могут быть и многочисленные белки-ферменты (каталитическая функция).

Белки являются и энергетическим материалом. При расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии, необходимой для большинства жизненно важных процессов в клетке.

Ферменти, их роль в клетке

Определение 3

Ферменты (энзимы) – это специфические белки, присутствующие во всех организмах и выполняющие функцию биологических катализаторов.

Химические реакции в живой клетке происходят при умеренной температуре нормальном давлении и в нейтральной среде.

При таких условиях течение реакций синтеза или распада веществ в клетке был быочень медленным, если бы не действие ферментов.

Ферменты ускоряют реакции за счёт снижения энергии активации не измененяя их общего результата, то есть при их наличии для придания молекулам, вступающим в реакцию, реакционной способности, необходимо значительно меньше энергии

Все процессы в живом организме прямо или косвенно происходят с участием ферментов.

Под действием ферментов составляющие компоненты пищи (белки, липиды, углеводы и др.) расщепляются до простейших соединений, а из них позже синтезируются новые, свойственные данному виду макромолекулы. Потому нарушение образования и активности ферментов часто становятся причиной тяжёлых заболеваний.

Ферментативный катализ подчиняется тем же законам, что и неферментативный катализ в химической промышленности, однако в отличие от последнего характеризируется чрезвычайно высокой степенью специфичности (фермент катализирует только одну реакцию или действует лишь на один тип связи). Этим обеспечивается тонкое регулирование всех жизненно важных процессов (дыхание, пищеварение, фотосинтез и т. п.), происходящих в клетке и организме.

Пример 4

Фермент уреаза катализирует расщепление только одного вещества – мочевины, но не действует каталитически на структурно родственные соединения.

Для понятия механизма действия ферментов, которые имеют высокую специфичность, чрезвычайно важна теория активного центра.

Согласно с ней, в молекуле каждого фермента есть один или больше участков, в которых катализ происходит за счёт тесного (во многих местах) контакта между молекулами фермента и субстрата (специфического вещества), а функциональная группа (пример – ОН – группа аминокислоты серина), или же отдельная аминокислота, выступает активным центром.

  • Обычно для действия катализатора необходимо, чтобы объединились несколько аминокислотных остатков, расположенных в определённой последовательности (в среднем 3 – 12).
  • Активный центр также может формироваться благодаря связи ферментов с ионами металов, витаминами и другими соединениями небелковой природы – так называемыми коферментами, или кофакторами.
  • Химическое строение и форма активного центра такова, что с ним способны связывать лишь определённые субстраты благодаря их идеальному соответствию (взаимодополняемости, или комплементарности) друг другу.
  • Остальные аминокислотные остатки обеспечивают большой молекуле ферментп соответствующую глобулярную форму, необходимую для эффективной работы самого центра.

Кроме того, вокруг большой молекулы фермента возникает сильное электрическое поле. В таком поле становится возможной ориентация молекул субстрата и приобретение ими ассиметрической формы. В результате ослабевают химические связи и начальная затрата энергии на реакцию, которая катализируется, будет меньше, а значит, значительно увеличится её скорость.

Пример 5

Одна молекула фермента каталазы способна за 1 мин расщепить более 5 млн. молекул перекиси водорода, которая возникает во время окисления в организме различных соединений.

Активный центр некоторых ферментов в присутствии субстрата может изменять конфигурацию: для обеспечения наибольшей каталитической активности такой фермент специально ориентирует свои функциональные группы.

Молекулы субстрата, присоединяясь к ферменту, также в определённых пределах изменяют свою конфигурацию для увеличения реакционной способностит функциональных групп центра.

На заключительном этапе химической реакции комплекс фермента и субстрата распадается, образуются конечные продукты и свободный фермент. Активный центр при этом освобождается и способен снова принимать новые молекулы субстрата.

Скорость реакций с участием ферментов зависит от многих факторов: от концентрации фермента, от природы субстрата, от давления, температуры, кислотности среды, от наличия ингибиторов.

При температурах, близких к 0˚С, до минимума замедляется скорость биохимических реакций. Это свойство широко используют в различных отраслях, особенно в медицине и сельском хозяйстве.

Пример 6

Для консервации органы человека (почки, серце, селезёнка, печень) перед пересадкой больному подвергают охлаждению, чтобы понизить интенсивность биохимических реакций и тем самым продлить время жизни этих органов. При быстром замораживании пищевых продуктов предотвращается размножение микроорганизмов, а так же инактивируются их ферменты, потому они уже не способны вызывать разложение пищевых продуктов.

Источник: https://spravochnick.ru/biologiya/himiya_zhizni/stroenie_i_funkcii_belkov/

2. 3. Химический состав белков

Белки являются
сложными органическими соединениями,
состоящими из аминокислот. Химический
анализ показал, что белки состоят из
следующих элементов:

  • Углерод 50-55 %
  • Водород 6-7 %
  • Кислород 21-23 %
  • Азот 15-17 %
  • Сера 0,3-2,5 %.

В
составе отдельных белков обнаружены
также фосфор, йод, железо, медь и др.
макро- и микровещества.

основных химических элементов может
различаться в отдельных белках, исключение
составляет азот, среднее количество
которого характеризуется наибольшим
постоянством и составляет 16 %.

В связи
с этим существует способ определения
количества белка по входящему в его
состав азоту.

Зная, что 6,25 грамм белка
содержит 1 грамм азота, можно найти
количество белка, умножив найденное
количество азота на коэффициент 6,25.

2. 4. Аминокислоты

Аминокислоты
карбоновые
кислоты альфа-углеродный атом водорода
которых замещен на аминогруппу. Белки
состоят из аминокислот. В настоящее
время известно более 200 различных
аминокислот.

В организме человека их
около 60, а в состав белков входят только
20 аминокислот, которые называют природными
или протеиногенными.

19
из них являются альфа-аминокислотами,
это означает, что аминогруппа присоединена
к альфа-углеродному атому карбоновой
кислоты. Общая формула этих аминокислот
выглядит следующим образом.

R

H2N CH COOH

Только
аминокислота пролин не соответствует
этой формуле, её относят к иминокислотам.

Химические
названия аминокислот, для краткости
сокращают, например, глутаминовая
кислота ГЛУ, серин СЕР и т.д. для записи
первичной структуры белков в последнее
время стали пользоваться только
однобуквенными символами.

Во
всех аминокислотах есть общие группировки:
-СН2, -NН2,
-СООН, они придают общие химические
свойства белкам, и радикалы, химическая
природа которых разнообразна. Именно
они определяют структурные и функциональные
особенности аминокислот.

Классификации
аминокислот основана на их физико-химических
свойствах.

По строению
радикалов:

  • Циклические — гомоциклические ФЕН, ТИР, гетероциклические ТРИ, ГИС.
  • Ациклические – моноаминомонокарбоновые ГЛИ, АЛА, СЕР, ЦИС, ТРЕ, МЕТ, ВАЛ, ЛЕЙ, ИЛЕЙ,НЛЕЙ, моноаминодикарбоновые АСП, ГЛУ, диаминомонокарбоновые ЛИЗ, АРГ.

По образованию в
организме:

  • Заменимые – могут синтезироваться в организме из веществ белковой и небелковой природы.
  • Незаменимые – не могут синтезироваться в организме, поэтому должны поступать только с пищей – все циклические аминокислоты, ТРЕ, ВАЛ, ЛЕЙ, ИЛЕЙ.

Биологическое
значение аминокислот:

  1. Входят в состав белков организма человека.

  2. Входят в состав пептидов организма человека.

  3. Из аминокислот образованы в организме многие низкомолекулярные биологически активные вещества: ГАМК, биогенные амины и т.д.

  4. Часть гормонов в организме – производные аминокислот (гормоны щитовидной железы, адреналин).

  5. Предшественники азотистых оснований, входящих в состав нуклеиновых кислот.

  6. Предшественники порфиринов, идущих на биосинтез гема для гемоглобина и миоглобина.

  7. Предшественники азотистых оснований, входящих в состав сложных липидов (холина, этаноламина).

  8. Участвуют в биосинтезе медиаторов в нервной системе (ацетилхолин, дофамин, серотонин, норадреналин и др.).

Свойства
аминокислот:

  1. Хорошо растворимы в воде.

  2. В водном растворе существуют в виде равновесной смеси биполярного иона, катионной и анионной форм молекулы. Равновесие зависит от рН среды.

  • NH3—CH—COOH NH3—CH—COO NH2—CH—COO
  • R + ОН R R + Н
  • Катионная
    форма Биполярный ион Анионная
    форма
  • Щелочная
    среда рН Кислая среда
  1. Способны двигаться в электрическом поле, что используется для разделения аминокислот с помощью электрофореза.

  2. Проявляют амфотерные свойства.

  3. Могут играть роль буферной системы, т.к. могут реагировать как слабое основание и слабая кислота.

Источник: https://studfile.net/preview/5301016/page:2/

Cостав белков: какие элементы входят, определение, строение

Cодержание:

  • Тонкости состава
  • Тонкости строения
  • Свойства
  • Итоги

Что такое белок и какие функции в организме он берет на себя. Какие элементы входят в его состав и в чем особенность этого вещества.

Белки — главный строительный материал в человеческом организме. Если рассматривать в целом, то эти вещества составляют пятую часть нашего тела.

В природе известна группа подвидов — только в теле человека содержится пять миллионов разных вариантов. С его участием формируются клетки, считающиеся главной составляющей частью живых тканей организма.

Какие элементы входят в состав белков и в чем особенность вещества?

Тонкости состава

Молекулы белка в теле человека отличаются строением и берут на себя определенные функции. Так, главным сократительным белком считается миозин, который формирует мускулатуру и гарантирует передвижение тела.

Читайте также:  Аптечные жиросжигатели: термогеники и другие разновидности

Он обеспечивает работу кишечника и движение крови по сосудам человека. Не менее важное вещество в организме — креатин. Функция вещества состоит в защите кожи от негативных действий — лучевых, температурных, механических и прочих.

Также креатин защищает от поступления микробов извне.

В состав белков входят аминокислоты. При этом первая из них открыта в начале XIX века, а весь аминокислотный состав известен ученым с 30-х годов прошлого века. Интересно, что из двух сотен аминокислот, которые открыты сегодня, только два десятка формируют миллионы различных по структуре белков.

Главное отличие структуры — в наличии радикалов, имеющих различную природу. Кроме того, аминокислоты часто классифицируются с учетом электрического заряда.

Каждая из рассматриваемых составляющих имеет общие характеристики — способность вступать в реакцию со щелочами и кислотами, растворимость в воде и так далее.

Почти все представители аминокислотной группы участвуют в метаболических процессах.

Рассматривая состав белков, стоит выделить две категории аминокислот — заменимые и незаменимые. Они отличаются между собой способностью синтезироваться в организме.

Первые вырабатываются в органах, что гарантирует хотя бы частичное покрытие текущего дефицита, а вторые — поступают только с едой.

Если количество любой из аминокислот снижается, то это приводит к нарушениям, а иногда и к гибели.

Белок, в котором присутствует полный аминокислотный набор, носит название «биологически полноценный». Такие вещества входят в состав животной пищи. Полезными исключениями считаются и некоторые представители растений — например, фасоль, горох и соя.

Главный параметр, по которому судят о пользе продукта — биологическая ценность.

Если в роли основы рассматривать молоко (100%), то для рыбы или мяса этот параметр будет равен 95, для риса — 58, хлеба (только ржаного) — 74 и так далее.

Незаменимые аминокислоты, входящие в состав белка, участвуют в синтезе новых клеток и ферментов, то есть они покрывают пластические нужды и применяются в роли главных источников энергии.

В состав белков входят элементы, которые способны к превращениям, то есть процессам декарбоксилирования и переаминирования.

В упомянутых выше реакциях участвуют две группы аминокислот (карбоксильная и аминная).

Наиболее ценным и полезным для организма считается яичный белок, структура и свойства которого идеально сбалансированы. Вот почему процентное содержание аминокислот в этом продукте почти всегда берется за основу при сравнении.

Выше упоминалось, что белки состоят из аминокислот, и главную роль играют независимые представители. Вот некоторые из них:

  • Гистидин — элемент, который получен в 1911 году. Его функция направлена на нормализацию условно-рефректорной работы. Гистидин играет роль источника для образования гистамина — ключевого медиатора ЦНС, участвующего в передаче сигналов к разным участкам организма. Если остаток этой аминокислоты снижается ниже нормы, то подавляется выработка гемоглобина в костном мозге человека.
  • Валин — вещество, открытое в 1879 году, но окончательно расшифрованное только через 27 лет. В случае его нехватки нарушается координация, кожные покровы становятся чувствительными к внешним раздражителям.
  • Тирозин (1846 год). Белки состоят из многих аминокислот, но этот играет одну из ключевых функций. Именно тирозин считается главным предшественником следующих соединений — фенол, тирамин, щитовидная железа и прочих.
  • Метионин синтезирован только к концу 20-х годов прошлого века. Вещество помогает в синтезе холина, защищает печень от чрезмерного образования жира, имеет липотропное действие. Доказано, что такие элементы играют ключевую роль в борьбе с атеросклерозом и в регулировании уровня холестерина. Химическая особенность метионина и в том, что он участвует в выработке адреналина, входит во взаимодействие с витамином В.
  • Цистин — вещество, строение которого установлено только к 1903 году. Его функции направлены на участие в химических реакциях, обменных процессах метионина. Также цистин вступает в реакцию с серосодержащими веществами (ферментами).
  • Триптофан — незаменимая аминокислота, что входит в состав белков. Ее удалось синтезировать к 1907 году. Вещество участвует в обмене белка, гарантирует оптимальный азотистый баланс в организме человека. Триптофан участвует в выработке сывороточных белков крови и гемоглобина.
  • Лейцин — одна из наиболее «ранних» аминокислот, известная с начала XIX века. Ее действие направлено на помощь организму в росте. Нехватка элемента приводит к нарушению работы почек и щитовидки.
  • Изолейцин — ключевой элемент, участвующий в азотистом балансе. Ученые открыли аминокислоту только в 1890 году.
  • Фенилаланин синтезирован в начале 90-х годов XIX века. Вещество считается основой при формировании гормонов надпочечников и щитовидки. Дефицит элемента — главная причина гормональных сбоев.
  • Лизин получен только в начале XX века. Нехватка вещества приводит к накоплению кальция в костных тканях, уменьшению объема мускулатуры в организме, развитию анемии и так далее.

Стоит выделить и химический состав белков. Это не удивительно, ведь рассматриваемые вещества относятся к химическим соединениям.

  • углерод — 50-55%;
  • кислород — 22-23%;
  • азот — 16-17%;
  • водород — 6-7%;
  • сера — 0,4-2,5%.

Кроме перечисленных выше, в состав белков входят следующие элементы (в зависимости от типа):

  • медь;
  • железо;
  • йод;
  • фосфор;
  • микро- и макровещества.

Химическое содержание различных белков отличается. Единственное исключение — азот, содержание которого всегда 16-17%.

По этой причине уровень содержания вещества определяется именно по процентному содержанию азота. Процесс вычисления следующий. Ученые знают, что в 6,25 граммах белка содержится один грамм азота.

Чтобы определить белковый объем, достаточно умножить текущее количество азота на 6,25.

Тонкости строения

При рассмотрении вопроса, из чего состоят белки, стоит изучить и структуру этого вещества. Выделяют:

  • Первичную структуру. За основу берется чередование аминокислот в составе. Если включается или «выпадает» хотя бы один элемент, то формируется новая молекула. Благодаря такой особенности, общее число последних достигает астрономической цифры.
  • Вторичную структуру. Особенность молекул в составе белка такова, что они находятся не в растянутом состоянии, а имеют различные (иногда сложные) конфигурации. Благодаря этому, жизнедеятельность клетки упрощается. Вторичная структура имеет вид спирали, сформированной из равномерных витков. При этом соседние витки отличаются тесной водородной связью. В случае многократного повторения устойчивость возрастает.
  • Третичная структура формируется, благодаря способности упомянутой спирали укладываться в клубок. Стоит знать, что состав и строение белков во многом зависит от первичной структуры. Третичная база, в свою очередь, гарантирует удержание качественных связей между аминокислотами с различными зарядами.
  • Четвертичная структура характерна для некоторых белков (гемоглобина). Последний формирует не одну, а несколько цепей, которые отличаются по первичной структуре.

Секрет молекул белка — в общей закономерности. Чем больше структурный уровень, тем хуже удерживаются между собой образующиеся химические связи. Так, вторичная, третичная и четвертичная структуры подвержены действию радиации, высоких температур и прочих условий окружающей среды.

Итогом часто становится нарушение строения (денатурация). При этом простой белок в случае изменения структуры способен к быстрому восстановлению.

Если же вещество подверглось негативному температурному действию или влиянию других факторов, то процесс денатурации необратим, а само вещество не подлежит восстановлению.

Свойства

Выше рассмотрено, что такое белки, определение этих элементов, структура и прочие важные вопросы. Но информация будет неполной, если не выделить главные свойства вещества (физические и химические).

Молекулярная масса белка — от 10 тысяч до одного миллиона (здесь многое зависит от типа). Кроме того, они растворимы в воде.

Отдельно стоит выделить общие черты белка с каллоидными растворами:

  • Способность к набуханию. Чем больше вязкость состава, тем выше молекулярная масса.
  • Медленная диффузия.
  • Способность к диализу, то есть делению аминокислотных групп на другие элементы при помощи мембран полупроницаемого типа. Главное отличие рассматриваемых веществ — их неспособность проходить через мембраны.
  • Двухфакторная устойчивость. Это значит, что белок по структуре гидрофилен. Заряд вещества напрямую зависит, из чего состоит белок, числа аминокислот и их свойств.
  • Размер каждой из частиц составляет 1-100 нм.

Также белки имеют определенные сходства с истинными растворами. Главное – в способности образования гомогенных систем. При этом процесс формирования самопроизвольный и не нуждается в дополнительном стабилизаторе. Кроме того, белковые растворы обладают термодинамической устойчивостью.

Ученые выделяют особые аморфные свойства рассматриваемых веществ. Объясняется это наличием аминогруппы. Если белок представлен в виде водного раствора, то в нем существуют в равной степени различные смеси — катионная, биполяного иона, а также анионная форма.

Также к свойствам белка стоит отнести:

  • Способность играть роль буфера, то есть реагировать аналогично слабой кислоте или основанию. Так, в организме человека присутствует два типа буферных систем — белковая и гемоглобиновая, участвующие в нормализации уровня гомеостаза.
  • Перемещение в электрическом поле. В зависимости от количества аминокислот в белке, их массы и заряда меняется и скорость движения молекул. Такая функция применяется для разделения с помощью электрофореза.
  • Высаливание (обратное осаждение). Если добавить к белковому раствору ионы аммония, щелочноземельные металлы и щелочные соли, эти молекулы и ионы конкурируют между собой за воду. На этом фоне гидратная оболочка удаляется, а белки перестают быть устойчивыми. В итоге они выпадают в осадок. Если же добавить определенный объем воды, то возможно восстановление гидратной оболочки.
  • Чувствительность к внешнему воздействию. Стоит отметить, что в случае негативного внешнего влияния белки разрушаются, что приводит к потере многих химических и физических свойств. Кроме того, денатурация становится причиной разрыва главных связей, стабилизирующих все уровни структуры белка (кроме первичного).

Причин денатурации множество — негативное влияние органических кислот, действие щелочей или ионов тяжелых металлов, негативное влияние мочевины и различных восстановителей, приводящих к разрушению мостиков дисульфидного типа.

  • Наличие цветных реакций с разными химическими элементами (зависит от аминокислотного состава). Такое свойство применяется в лабораторных условиях, когда требуется определить общее количество белка.

Итоги

Белок — ключевой элемента клетки, обеспечивающий нормальное развитие и рост живого организма. Но, несмотря на изученность вещества учеными, впереди предстоит еще много открытий, позволяющих глубже узнать тайну человеческого организма и его строения. Пока же каждый из нас должен знать, где образуются белки, в чем их особенности и для каких целей они необходимы.

2 сентября 2016

Источник: https://Proteinfo.ru/voprosy-pitaniya/pitatelnye-elementy/sostav-belkov/

Ссылка на основную публикацию