Процесс образования пептидной связи из аминокислот

Аминокислоты способны соединяться между собой связями, которые называются пептидными, при этом образуется полимерная молекула. Если количество аминокислот не превышает 10, то новое соединение называется пептид; если от 10 до 40 аминокислот – полипептид, если более 40 аминокислот – белок.

Пептидная связь – это связь между α-карбоксильной группой одной аминокислоты и α-аминогруппой другой аминокислоты.

Процесс образования пептидной связи из аминокислот

Образование пептидной связи

При необходимости назвать пептид ко всем названиям аминокислот добавляют суффикс «-ил», только последняя аминокислота сохраняет свое название неизменным. Например,

  • аланил-серил-триптофан,
  • γ-глутаминил-цистеинил-глицин (по-другому называемый глутатион).

Глутатион — это трипептид, участвующий в целом ряде биохимических процессов: Процесс образования пептидной связи из аминокислот

Строение трипептида глутатиона

Особенностью глутатиона является связывание глутамата и цистеина не истинной пептидной связью, а через γ-карбоксильную группу радикала глутаминовой кислоты.

К свойствам пептидной связи относятся:

1. Копланарность

Все атомы, входящие в пептидную группу находятся в одной плоскости, при этом атомы «Н» и «О» расположены по разные стороны от пептидной связи.

Процесс образования пептидной связи из аминокислот

2.Транс-положение заместителей

Радикалы аминокислот по отношению к оси пептидной C—N-связи находятся по «разные» стороны, в транс-положении.

Процесс образования пептидной связи из аминокислот

3. Две равнозначные формы

Пептидная связь находится в кетоформе и енольной форме.

Процесс образования пептидной связи из аминокислот

4. Способность к образованию водородных связей

Атомы кислорода и водорода, входящие в пептидную группу, обладают способностью образовывать водородные связи с атомами кислорода и водорода других пептидных групп.

Процесс образования пептидной связи из аминокислот

5. Пептидная связь имеет частично характер двойной связи

Длина пептидной связи меньше, чем одинарной связи, она является жесткой структурой, и вращение вокруг нее затруднено. Но так как, кроме пептидной, в белке есть и другие связи, цепочка аминокислот способна вращаться вокруг основной оси, что придает белкам различную конформацию (пространственное расположение атомов).

Процесс образования пептидной связи из аминокислот

Источник: https://biokhimija.ru/aminoikislota/peptidnaja-svjaz.html

Пептидная связь

Главная › Наша Википедия › Пептидные связи

Процесс образования пептидной связи из аминокислот Пептидная связь — это химическая связь, возникающая между двумя молекулами в результате реакции конденсации между карбоксильной группой (-СООН) одной молекулы и аминогруппой (-NH2) другой молекулы, при выделении одной молекулы воды (H2O).

Молекула, содержащая пептидную связь, называется амидом.

Четырехатомная функциональная группа –C(=O)NH– называется амидной группой или, когда речь идет о белках, пептидной.

Пептидные связи чаще всего встречаются в природе в составе пептидов [1] и белков [2], соединяющих между собой остатки аминокислот [3]. Пептидные связи также является основой пептидной нуклеиновой кислоты (ПНА). Полиамиды, такие как нейлон и арамид, являются синтетическими молекулами (полимерами), которые также содержат пептидные связи.

Образование пептидной связи

Образование пептидной связи происходит в результате реакции конденсации между карбоксильной и аминогруппой. При этом аминогруппа играет роль нуклеофила [4], замещая гидроксил карбоксильной группы.

Поскольку –OH является плохой уходящей группой, реакция конденсации протекает достаточно тяжело. Обратная реакция – разрушение пептидной связи – называется реакцией гидролиза.

При стандартных условиях, химическое равновесие смещается именно в сторону гидролиза, с образованием свободных аминокислот (либо других мономерных единиц).

Пептидная связь метастабильна, несмотря на то, что при его гидролизе выделяется порядка 10 кДж / моль энергии, этот процесс без наличия катализатора гидролиза протекает чрезвычайно медленно: время жизни пептида в водном растворе составляет около 1000 лет.

В живых организмах, реакции гидролиза ускоряются ферментами.

Реакция конденсации, в результате которой осуществляется формирование пептидной связи, требует свободной энергии Гиббса [5]. Как в химическом синтезе, так и в биосинтезе белков, реакция обеспечивается активацией карбоксильных групп, в результате чего отхождение гидроксильной группы облегчается.

Резонансные формы пептидных связей

Процесс образования пептидной связи из аминокислот
Процесс образования пептидной связи из аминокислот

В пептидных группах вращения вокруг C-N связи не происходит вследствие ее частичной двойственности. Вращение возможно только вокруг связей С—С^5, и N—С^5,. В результате остов пептида может быть представлен в виде серии полей, разделенных совместными точками вращения (С^5, атомы). Данная структура ограничивает количество возможных конформаций [6] пептидных цепей.

Кроме того, эффект резонанса стабилизирует группу, добавляя энергию примерно 84 ккал / моль, что делает ее менее химически активной, в сравнении с подобными группам (например, эфирами).

Данная группа не имеет заряда с точки зрения физиологических значений pH, однако вследствие существования двух резонансных форм, карбонильный кислород несет частично отрицательный заряд, а амидный азот – частично положительный.

Таким образом, возникает диполь с дипольным моментом, около 3,5 Дебай (0,7 электрон-ангстрем). Указанные дипольные моменты могут ориентироваться параллельно в определенных типах вторичной структуры (например ^5,-спирали).

Конфигурации пептидной связи

Для планарной пептидной связи возможны две конфигурации:

  1. Транс-конфигурация,
  2. Цис-конфигурация.

В транс-конфигурации ^5,-атомы углерода и боковые цепи расположены по разные стороны пептидной связи, в то время как в цис-конфигурации – с одной и той же.

«Транс» – форма пептидных связей значительно более широко распространена (встречаясь в 99,6% случаев), нежели «цис», из-за того, что в последнем случае велика вероятность пространственного столкновения между боковыми группами аминокислот.

Исключением является аминокислота пролин [7], если она будет соединена через аминогруппу с какой-либо другой аминокислотой. Пролин – единственная из протеиногенных аминокислот, содержащих около C^5, не первоначальную, а вторичную аминогруппу.

В ней атом азота связан с двумя атомами углерода, а не с одним, как у других аминокислот. У пролина, включенного в пептид, заместители при атоме азота отличаются не так сильно, как в других аминокислотах.

Поэтому разница между «транс» и «цис» конфигурациями весьма незначительна, ни одна из них не имеет энергетического преимущества.

Конформация пептида определяется тремя двугранными углами, отражающими вращения вокруг трех последовательных связей в пептидной остове: `8, (пси) – вокруг C^5,1—С, `9, (омега) – вокруг С-N, и `6, (фи) – вокруг N—С^5,2.

Вращения вокруг собственно пептидной связи не происходит, так как `9, угол всегда имеет значение около 180 ° у транс-конфигурации, и 0 °, – у значительно более редкой цис-конфигурации.

Поскольку связи N—С^5,2 и C^5,1—С по обе стороны от пептидной являются обычными одинарными связями, вращения вокруг них неограниченно, в результате чего пептидные цепи могут принимать самые разнообразные пространственные конформации. Однако возможны далеко не все комбинации двугранных углов, при некоторых из них происходит пространственное столкновения атомов. Допустимые значения визуализируют на двухмерном графике, именующемся диаграммой Рамахандрана.

Методы определения пептидных связей

Методы определения пептидных связей основаны на том, что пептидная группа имеет характерную полосу поглощения в диапазоне 190-230 нм.

Качественной реакцией на пептидную связь является биуретовая реакция с концентрированным раствором меди (II) сульфата (CuSO4) в щелочной среде. Продуктом является комплексное соединение сине-фиолетовой окраски между атомом меди и атомами азота.

Процесс образования пептидной связи из аминокислот Биуретовая реакция может быть использована для колориметрического измерения концентрации белков и пептидов, однако из-за низкой чувствительности этого метода значительно чаще используются его модификации. Одной из таких модификаций является метод Лоури [8], в котором биуретовая реакция сочетается с окислением остатков ароматических аминокислот.

Примечания

Примечания и пояснения к статье «Пептидная связь».

При написании статьи о пептидных связях, в качестве источников, использовались материалы информационных и медицинских интернет-порталов, сайтов новостей Nature.com, ScienceDaily.com, Википедия, а также следующие печатные издания:

  • Валькович Э. И. «Общая и медицинская эмбриология: учебное пособие для медицинских вузов». Издательство «Фолиант», 2003 год, Санкт-Петербург,
  • Лебедев А. Т., Артеменко К. А., Самгина Т. Ю. «Основы масс-спектрометрии белков и пептидов». Издательство «Техносфера», 2012 год, Москва.

Процесс образования пептидной связи из аминокислот

Источник: http://MoiTabletki.ru/peptide-bond.html

Пептидная связь: образование, строение, свойства

Процесс образования пептидной связи из аминокислот

Содержание:

  • Что такое пептидная связь?
  • Образование пептидной связи
  • Свойства пептидной связи
  • Строение пептидной связи
  • Методы определения пептидных связей
  • Рекомендованная литература и полезные ссылки
  • Пептидная связь, видео
  • Именно пептидная связь является основой построения всех белковых молекул, из которых, в конечном счете, образуется вся живая материя. Особенности строения пептидной связи, ее структура оказали огромное влияние на саму возможность существования жизни на нашей планете. О том, что такое пептидная связь, как она образуется и какими свойствами обладает, читайте дальше.

    Что такое пептидная связь?

    Пептидная связь это связь, возникающая между аминокислотами при взаимодействии аминогруппы (-NH2) и карбоксильной группы (-COOH). Две соединенные одна с другой кислоты образуют дипептид, три – трипепетид и так далее. Длинные цепи подобного рода зовутся полипептидами и белками.

    Также академическое определение пептидной связи звучит так: пептидная связь – это вид химической связи, возникающей вследствие взаимодействия α-аминогруппы одной аминокислоты и α-карбоксигруппы другой аминокислоты.

    Процесс образования пептидной связи из аминокислот

    Само же слово «пептид» происходит от греческого «питательный» и означает семейство веществ, молекулы которых построены из двух или более остатков аминокислот, соединенных в цепь пептидными связями —C(O)NH—.

    Образование пептидной связи

    Как образуется пептидная связь? Образование пептидной связи происходит внутри клеток на рибосомах при активном участии ферментов с затратой энергии. Аминокислоты при этом, будучи мономерами, играют роль таких себе строительных блоков белков. Для синтеза белка живыми организмами используется 20 видов различных аминокислот.

    Что же касается самого процесса образования пептидной связи между аминокислотами, то она образуется при оттягивании электронной плотности с атома водорода аминогруппы одной аминокислоты и атомом кислорода карбоксильной группы другой аминокислоты.

    Вот так процесс образования пептидной связи в молекуле выглядит схематически.

    Процесс образования пептидной связи из аминокислот

    Как следствие разрываются соединения между N и H в аминогруппе и между C и OH в карбоксильной группе. Соединение протона и гидроксильной группы в результате образует воду, а два аминокислотных остатка – дипептид.

    Свойства пептидной связи

    Пептидная связь, которая имеет место при первичной структуре белков, не является полностью одинарной. Длина ее равна 0,132 нм. Это среднее значение между истинной двойной и одинарной связями.

    Важными свойствами пептидной связи являются копланарность и трансположение, далее подробно их поясним.

    Копланарность означает, что все атомы, входящие в пептидную группу находятся на одной плоскости, а атомы H и О располагаются по разные стороны от пептидной связи. Но стоит заметить, что радикальные группы аминокислот и водорода при α-углеродах лежат за пределами плоскости.

    Трансположение означает, что кислород и водород пептидной связи находятся в транс-ориентации. Также в транс-ориентации ориентированы аминокислотные R-группы во всех белковых и пептидных молекулах естественного происхождения.

    Строение пептидной связи

    В чем особенности строения пептидной связи? В амидной группе –CO-NH- углеродный атом существует в форме sp2-гибридизации. К примеру, электронная пара атома азота сопрягается с π-электронами двойной связи между углеродом и кислородом. Тогда электронная плотность пептидной группы сместится к кислороду. В результате подобного сопряжения выровняются длины связей внутри радикала.

    Структура подобной пептидной связи и формула отражена на картинке.

    Процесс образования пептидной связи из аминокислот

    Методы определения пептидных связей

    Наилучшим методом для определения пептидных связей является биуретовая реакция. Такое название она имеет потому, что впервые эта реакция была использована для получения биурета, который хотя и не является аминокислотой, но обладает при этом двумя пептидными связями.

    Сам механизм определения сводится к тому, что аминокислоты, способные образовать как минимум две пептидные связи в щелочной среде при добавлении сульфата меди образуют мельсодержащее комплексное соединение фиолетового цвета.

    Рекомендованная литература и полезные ссылки

    • Nomenclature and Symbolism for Amino Acids and Peptides. Recommendations 1983″. European Journal of Biochemistry. 138 (1): 9–37. 1984. doi:10.1111/j.1432-1033.1984.tb07877.x. ISSN 0014-2956.
    • Muller, P (1994-01-01). “Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994)”. Pure and Applied Chemistry. 66 (5): 1077–1184. doi:10.1351/pac199466051077. ISSN 1365-3075.
    • Watson J, Hopkins N, Roberts J, Agetsinger Steitz J, Weiner A (1987) [1965]. Molecualar Biology of the Gene (hardcover) (Fourth ed.). Menlo Park, CA: The Benjamin/Cummings Publishing Company, Inc. p. 168. ISBN 978-0805396140.
    • Miller BR, Gulick AM (2016). “Structural Biology of Nonribosomal Peptide Synthetases”. Methods in Molecular Biology. 1401: 3–29. doi:10.1007/978-1-4939-3375-4_1. ISBN 978-1-4939-3373-0. PMC 4760355. PMID 26831698.
    • Griffiths AJ, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (2000). Protein synthesis. An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman. ISBN 978-0716735205.
    Читайте также:  Витамин e: как называется, что дает, роль в организме, из чего делают, действие на организм

    Пептидная связь, видео

    Источник: https://www.poznavayka.org/himiya/peptidnaya-svyaz/

    Пептидная связь — это основа первичной структуры белка. Характеристика и образование пептидной связи :

    Пептидная связь — это прочное соединение между фрагментами двух аминокислот, которое лежит в основе образования линейных структур белков и пептидов. В таких молекулах каждая аминокислота (за исключением концевых) соединяется с предыдущей и последующей.

    В зависимости от количества звеньев пептидные связи могут создавать дипептиды (состоят из двух аминокислот), трипептиды (из трех), тетрапептиды, пентапептиды и т. д. Короткие цепочки (от 10 до 50 мономеров) называют олигопептидами, а длинные — полипептидами и белками (мол. масса более 10 тыс. Да).

    Характеристика пептидной связи

    Пептидная связь — это ковалентное химическое соединение между первым атомом углерода одной аминокислоты и атомом азота другой, возникающее в результате взаимодействия альфа-карбоксильной группы (COOH) с альфа-аминогруппой (NH2). При этом происходит нуклеофильное замещение OH-гидроксила на аминогруппу, от которой отделяется водород. В итоге образуется одинарная C-N связь и молекула воды.

    Процесс образования пептидной связи из аминокислот

    Так как во время реакции происходит потеря некоторых компонентов (ОН-группы и атома водорода), звенья пептида называют уже не аминокислотами, а аминокислотными остатками.

    Из-за того, что последние содержат по 2 атома углерода, в пептидной цепи происходит чередование С-С и C-N-связей, которые формируют пептидный остов. По бокам от него располагаются аминокислотные радикалы.

    Расстояние между атомами углерода и азота варьирует от 0,132 до 0,127 нм, что свидетельствует о неопределенной связи.

    Пептидная связь — это очень прочный вид химического взаимодействия. При стандартных биохимических условиях, соответствующих клеточной среде, она не подвергается самостоятельному разрушению.

    Для пептидной связи белков и пептидов характерно свойство копланарности, поскольку все атомы, участвующие в ее образовании (C, N, O и H), располагаются в одной плоскости. Это явление объясняется жесткостью (т. е.

    невозможностью вращения элементов вокруг связи), возникающей в результате резонансной стабилизации. В пределах аминокислотной цепи между плоскостями пептидных групп находятся α-углеродные атомы, связанные с радикалами.

    Процесс образования пептидной связи из аминокислот

    Типы конфигурации

    В зависимости от положения альфа-углеродных атомов относительно пептидной связи последняя может иметь 2 конфигурации:

    • «цис» (расположены с одной стороны);
    • «транс» (находятся с разных сторон).

    Транс-форма характеризуется большей устойчивостью. Иногда конфигурации характеризуют по расположению радикалов, что не меняет сути, поскольку они связаны с альфа-углеродными атомами.

    Явление резонанса

    Особенность пептидной связи заключается в том, что она на 40% двойная и может находится в трех формах:

    • Кетольной (0,132 нм) — C-N-связь стабилизирована и полностью одинарна.
    • Переходной или мезомерной – промежуточная форма, имеет частично неопределенный характер.
    • Енольной (0,127 нм) — пептидная связь становится полностью двойной, а соединение С-О — полностью одинарным. При этом кислород приобретает частично отрицательный заряд, а атом водорода — частично положительный.

    Процесс образования пептидной связи из аминокислот

    Такая особенность называется эффектом резонанса и объясняется делокализованностью ковалентной связи между атомом углерода и азота. При этом гибридные sp2-орбитали формируют электронное облако, распространяющееся на атом кислорода.

    Формирование пептидной связи

    Формирование пептидной связи — это типичная реакция поликонденсации, которая термодинамически невыгодна. В естественных условиях равновесие смещается в сторону свободных аминокислот, поэтому для осуществления синтеза требуется катализатор, активирующий или модифицирующий карбоксильную группу для более легкого ухода гидроксильной.

    В живой клетке образование пептидной связи происходит в белоксинтезирующем центре, где в роли катализатора выступают специфические ферменты, работающие с затратой энергии макроэргических связей.

    Источник: https://www.syl.ru/article/404657/peptidnaya-svyaz-eto-osnova-pervichnoy-strukturyi-belka-harakteristika-i-obrazovanie-peptidnoy-svyazi

    Пептиды

    Пептиды
    – это природные или синтетические
    соединения, молекулы которых построены
    из остатков аминокислот, соединенных
    между собой пептидными (пептидный
    мостик), по своей сути, амидными связями.

    Молекулы пептидов
    могут содержать неаминокислотную
    компоненту. Пептиды, имеющие до 10
    аминокислотных остатков, называются
    олигопептидами
    (дипептиды,
    трипептиды и т.д.) Пептиды, содержащие
    более 10 до 60 аминокислотных остатков,
    относят к полипептидам.
    Природные полипептиды с молекуляроной
    массой более 6000 дальтон называют белками.

    Номенклатура

    Аминокислотный
    остаток пептида, который несет
    -аминогруппу,
    называют N-концевым,
    несущий свободную -карбоксильную
    группу – С-концевым.
    Название пептида состоит из перечисления
    тривиальных названий аминокислот,
    начиная с N-концевой.
    При этом суффикс «ин» меняется на «ил»
    для всех аминокислот, кроме С-концевой.

    Примеры

    а)

    Глицилаланин или
    Gly-Ala

    б) аланил-серил-аспаргил-фенилаланил-глицин

    или Ala – Ser – Asp – Phe – Gly. Здесь
    аланин N-концевая
    аминокислота, а глутамин – С-концевая
    аминокислота.

    Классификация пептидов

    1. Гомомерные
    – при
    гидролизе образуются только аминокислоты.

    • 2. Гетеромерные
      – при гидролизе кроме -аминокислот,
      образуются неаминокислотные компоненты,
      например:
    • а) гликопептиды;
    • б) нуклеопептиды;
    • в) фосфопептиды.

    Пептиды могут
    быть линейными или циклическими. Пептиды,
    в которых связи между аминокислотными
    остатками только амидные (пептидные),
    называются гомодетными.
    Если, кроме амидной группы, имеются
    сложноэфирные, дисульфидные группы
    пептиды называются гетеродетным.


    Гетеродетные пептиды, содержащие гидроксиаминокислоты называются
    пептолидами.
    Пептиды, состоящие из одной аминокислоты называются гомополиаминокислотами.
    Те пептиды, которые содержат одинаковые
    повторяющиеся участки (из одного или
    нескольких аминокислотных остатков),
    называют регулярными.

    Гетеромерные и гетеродетные пептиды
    называются
    депсипептидами
    .

    Строение пептидной связи

    В амидах связь углерод-азот является частично
    двоесвязанной вследствие р,-сопряжения
    НПЭ атома азота и -связи
    карбонила (длина связи С-N:
    в амидах — 0,132 нм , в аминах — 0,147 нм), поэтому
    амидная группа является плоской и имеет
    транс-конфигурацию.

    Таким образом,
    пептидная цепь представляет собой
    чередование плоских фрагментов амидной
    группы и фрагментов углеводородных
    радикалов соответствующих аминокислот.
    В последних вращение вокруг простых
    связей незатруднено, следствием этого
    является образование различных
    конформеров.

    Длинные цепи пептидов
    образуют -спирали
    и β-структуры (аналогично белкам).

    Синтез пептидов

    В процессе синтеза
    пептида должна образоваться пептидная
    связь между карбоксильной группой одной
    аминокислоты и аминной группой другой
    аминокислоты. Из двух аминокислот
    возможно образование двух дипептидов:

    Приведённые выше
    схемы являются формальными. Для синтеза, например, глицилаланина, необходимо
    провести соответствующие модификации
    исходных аминокислот (в данном пособии
    этот синтез не рассматривается).

    Источник: https://studfile.net/preview/1730824/page:5/

    ПОИСК

        Заслуживает особого внимания реакция ацилирования аминокислот. Другие реакции аминокислот также имеют важное биологическое значение. Папример, как будет показано позднее, в основе всех реакций витамина Вб лежит образование оснований Шиффа (взаимодействие амино- и альдегидной групп гл. 7).

    Однако именно ацилирование аминогрунны одной аминокислоты карбоксильной (активированной) группой другой аминокислоты приводит к образованию пептидной связи и затем к образованию полимерной молекулы—белка. Для химика-биооргаиика весьма интересно сопоставить синтез наиболее сложных макромолекул в пробирке и в организме. [c.

    52]     Белки — это сложные высокомолекулярные природные соединения, построенные из а,-аминокислот. По современным представлениям, в белках а-аминокислоты соединены между собой пептидными (амидными) связями (—NH—СО—) в пептидные цепи. Образование пептидных связей происходит в результате взаимодействия карбоксила одной аминокислоты с аминогруппой другой.

    При этом из двух а-амино-кислот е выделением одной молекулы воды образуются [c.416]

        В 1903 г. Э. Фишером высказана пептидная теория, давшая ключ к тайне строения белка. Фишер предположил, что белки представляют собой полимеры аминокислот, соединенных пептидной связью. Идея о том, что белки — это полимерные образования, высказывалась уже в 70—80-е годы XIX в. Р.

    Хертом и А. Я. Данилевским. Современные исследования позволяют различигь в сфуктуре белка первичную, вторичную, третичную и четвертичную структуры. [c.258]

        Карбоксигруппа охотно присоединяется к катиону, после чего происходит образование смешанного ангидрида. Последний в свою очередь реагирует с аминогруппой второй аминокислоты с образованием пептидной связи.

    Кроме того, образующийся таким образом смешанный ангидрид не накапливается в растворе (его образование лимитирует скорость всего процесса), а сразу атакуется амином.

    Поэтому образования азлактона не происходит и не происходит существенной рацемизации в процессе полипептидного синтеза.

    Образовавшийся смешанный ангидрид атакуется второй аминокислотой лишь по одной из двух карбонильных групп с образованием диоксида углерода и этанола в качестве побочных продуктов. Причина такого поведения обсуждалась ранее (см, образование пептидной связи через ангидриды кислот). [c.86]

        Мономерными единицами, из которых построены белки, являются 20 а-аминокислот. Эти малые молекулы наделены свойством, общим для всех молекул, способных к полимеризации они содержат по меньшей мере две разные химические группы, способные реагировать друг с другом с образованием ковалентной связи.

    У аминокислот такими группами служат аминогруппа (—ЫНг) и карбоксильная группа (—СООН), а связь, которой определяется образование белкового полимера, представляет собой пептидную (амидную) связь.

    Образование пептидной связи можно представлять себе как отщепление молекулы воды от присоединяющихся друг к другу —СООН- и —NH2-гpyпп [уравнение (2-7)]. В водной среде равновесие в реакциях такого типа сдвинуто в сторону образования свободных аминокислот, а не пептида.

    Следовательно, синтез пептидов (как в естественных условиях, так и в лаборатории) осуществляется непрямым путем и не сводится к простому отщеплению воды. [c.80]

        Ступенчатый синтез предполагает в общем виде след, операции защита карбоксильной группы одной аминокислоты защита аминогруппы второй аминокислоты образование пептидной связи между обоими компонентами с предварительной активацией карбоксильной группы второго компонента или аминогруппы первого компонента или с использованием конденсирующих средств, облегчающих конденсацию неактивированных карбоксильной и аминогруппы селективное снятие защитной группы с N-конца (или с С-конца) образовавшегося дипептида ступенчатое наращивание пептидной цепи по этому концу дипептида путем последовательного повторения двух последних стадий. [c.15]

        Поскольку каждая аминокислота присоединяется поочередно, при химическом синтезе белков очень важен выход на каждой стадии. Вновь обращаясь к синтезу Gly-Ala, отметим, что, если синтез пептидной связи прошел на 90%, такой синтез может считаться удовлетворительным.

    Однако, если те же условия использованы для синтеза декапептида грамицидина S, то общий выход составит 0,9 X 100% = 35%. При этом не учитываются потери при введении и снятии защитных групп.

    Следовательно, при синтезе белковых макромолекул образование пептидной связи должно проходить с высоким выходом. [c.68]

        Ферменты состоят из аминокислот, связанных пептидными связями. Молекула фермента имеет чередующиеся полярные группы СООН, NHa, NH, ОН, SH и др., а также гидрофобные группы. Первичная структура фермента обусловливается порядком чередования различных аминокислот.

    В результате теплового хаотического движения макромолекула фермента изгибается и свертывается в рыхлые клубки. Между отдельными участками полипептидной цепи возникает межмолекулярное взаимодействие, приводящее к образованию водородных связей.

    Возникает вторичная структура фермента в [c.295]

        Полученный ацилхлорид легко реагирует с аминогруппой второй аминокислоты с образованием пептидной связи. Однако, поскольку хлор — хорошая уходящая группа, ацилхлориды легко рацемизуются путем промежуточного образования азлактонов (разд. 2.6). [c.79]

        Б белковой молекуле аминокислоты соединены между собой пептидными связями. При образовании пептидной связи карбоксильная группа одной аминокислоты взаимодействует с а минной группой другой, при этом выделяется молекула воды  [c.4]

        Существует большое число методов образования пептидной связи между замещенными аминокислотами или пептидами. Обычно их разделяют на методы, при которых активируется карбоксильная группа, и методы, связанные с активированием аминогруппы. [c.386]

        Связь —СОЫН— между аминокислотами называется пептидной связью. Белки иногда называют полипептидами. Однако обычно термин полипептид относится к полимеру аминокислот с молекулярной массой не менее 10000. Чтобы понять, какую роль играет пептидная связь при образовании полимера, нам следует ознакомиться со структурами аминокислот, из которых состоят белки. [c.444]

    Читайте также:  Как правильно принимать витамины animal pak

        Следует учитывать и другой фактор, присущий исключительно биологическим системам,— оптическую чистоту. Белки состоят из L-аминокислот. Поэтому при химическом синтезе следует исходить из L-аминокислот, а в процессе синтеза рацемизация должна быть сведена к минимуму.

    В наибольшей степени это относится к синтезу ферментов, каталитическая активность которых зависит от оптической чистоты. Аминокислоты особенно легко подвергаются рацемизации, когда они ацилированы (т. е. когда аминогруппа блокирована ацильной группировкой) через промежуточное образование азлактона.

    Такое превращение может произойти, например, в процессе введения защитной группы или в процессе образования пептидной связи  [c.68]

        Заряд 6+ на углероде значительно уменьшается у амфотерных аминокислот. Поэтому реакция образования пептидной связи может происходить только при значительной затрате энергии.

    На образование одного моля пептида затрачивается около 3000—4000 кал.

    Можно провести, однако, реакцию и при обычных условиях, если активизировать молекулу аминокислоты путем увеличения заряда на С-атоме введением в молекулу аминокислоты группировок, оттягивающих иа себя электроны. [c.487]

        Образование пептидной связи в мягких условиях удается лишь при активировании карбоксильного компонента одной из аминокислот, вступающей в реакцию (рис. 2-4). [c.95]

        Уже при зарождении синтетической пептидной химии для образования пептидной связи использовалась ацилирующая способность метиловых и этиловых эфиров аминокислот.

    Первые работы, проведенные Курциусом и Фищером, хотя и не получили практического применения, однако способствовали пониманию того, что эфиры ацилированных аминокислот и пептидов являются активированными соединениями. Спустя примерно 80 лет Виланд и сотр.

    (257], применив для образования пептидной связи тиоэфиры N-замещенных аминокислот, сделали метод активированных эфиров достоянием современной пептидной химии. Немного позже Швицеру и сотр. [c.146]

        Ферменты — высокомолекулярные белковые соединения, состоящие из аминокислот, связанных пептидными связями. В составе природных белков встречается около двадцати аминокислот. Молекулярная масса ферментов лежит в пределах от 10 до 10 .

    Молекула фермента в своем составе имеет чередующиеся полярные группы СООН, ННа, МН, ОН, 5Н и другие, а также гидрофобные группы. Первичная структура фермента обуславливается порядком чередования различных аминокислот.

    В результате теплового хаотического движения макромолекула фермента изгибается, свертывается в рыхлые клубки.

    Между отдельными участками полипептидной цепи возникает межмолекулярное взаимодействие, приводящее к образованию водородных связей другие участки могут взаимодействовать за счет электростатических или ван-дер-ваальсовых сил  [c.632]

        В химии нередки случаи, когда протекание одной реакции вызывает (индуцирует) протекание в той же системе другой реакции, неосуществимой в отсутствие первой. Так, например, Ы-карбобен-зэксиаминокислоты не могут непосредственно реагировать с эфирами аминокислот с образованием пептидной связи [c.233]

        Применение находят два подхода. Первый заключается в переводе аминокислоты с блокированной аминогруппой в активированную форму и проведении реакции с аминогруппой второй аминокислоты.

    Напомним, что на образование пептидной связи затрачивается работа, поэтому необходима активация.

    Второй — взаимодействие двух аминокислот (одной с блокированной амино-, а другой — с карбоксигруппой) в присутствии конденсирующего реагента, активирующего карбоксил in situ. Остановимся сначала на первом. [c.79]

        Аминолиз алкиловых эфиров — медленный, почти равновесный процесс. С термодинамической точки зрения пептидная связь немного прочнее. С химической точки зрения алкоксиды представляют собой не очень хорошие уходящие группы.

    Однако существует возможность ускорить образование пептидной связи, используя эфир с лучшей уходящей группой, т. е. активированный эфир . Аминолиз активированного эфира обеспечит энергию, необходимую для образования пептидной связи.

    -Нитрофенол — гораздо более сильная кислота, чем метанол (благодаря резонансной стабилизации аниона, см. выше), так что п-нитрофе-ниловый эфир аминокислоты — это активированный эфир. Такой эфир можно синтезировать из кислоты и п-нитрофенола в присутствии конденсирующего (дегидратирующего) агента, ДЦГК (см. ниже).

    Пентахлорфенол также более сильная кислота, чем метанол (благодаря отрицательному индуктивному эффекту хлора, см. выше), так что его можно использовать при получении активированных эфиров. [c.82]

        BqDнeм я к аминокислотам, а точнее — к одному важнейшему из их взаимодействий дрзт с другом — реакции конденсации, когда две молекулы аминокислоты связывают ся за счет аминогруппы одной кислоты и карбоксила другой с образованием пептидной связи и молекулы пептида  [c.267]

        Как показано на схеме 1, аминокислота взаимодействует с т-РНК за счет карбоксильной группы. Образующаяся связь относится к числу макроэргических. Перед тем как возникает пептидная связь, карбоксильная группа должна освободиться.

    Предполагают, что выделяющаяся энергия при этом и используется для образования пептидной связи. Синтезу этого соединения, который показан на схеме 2, предшествует взаимодействие аминокислоты с АТФ, катализируемое ферментом аминоацетилсинтетазой.

    В результате отщепляется пирофосфатный фрагмент и образуется соединение, в котором содержится одна макроэргическая связь  [c.392]

        Фталоильные и другие производные. — Из множества предложенных защитных групп некоторое применение иашла фтало-ильная (Шихан, 1949 Кидд, 1949). Фталоильные производные получают нагреванием аминокислоты с фталевым ангидридом.

    После образования пептидной связи соединение обрабатывают спиртовым раствором гидразина и соляной кислотой, при этом освобождается аминогруппа, а защитная группировка отщепляется в виде фталилгидразида (Инг и Манске, 1926).

    Расщепление фталоильных производных идет быстрее, чем гидрогенолиз карбобензоксипроизводных, для завершения которого иногда требуется несколько дней. [c.677]

        В методе, который среди новых синтетических методов образования пептидных связей является наиболее широко применяемым, используется ангидрид угольной и карбоновой кислот этот метод был разработан в 1951 г.

    одновременно в трех различных лабораториях [48, 54—56], В основном этот метод со- стоит в образовании смептаиного ангидрида в резуль.тате реак-пив между солью третичного амина и сс-ациламинокислоты нли пептида и алкильным эфиром хлоругольной. кислоты в инертном растворителе при низкой температуре.

    Затем к этому раствору смешанного ангидрида прибавляют эфир аминокислоты или пептида, который подлежит ацилиропанию. Выделение смешанного ангидрида не обязательно и даже не очень жела- тельно, хотя его можно выделить из аммонийной соли, получающейся в качестве побочного продукта.

    Так, при обработке ди-карбобензилокси-Ь-лизина в толуоле триэтиламином и изобути-ловым эфиром хлоругольной кислоты образуется смешанный ангвдрид VIII, который вступает в реакцию с этиловым эфиром [c.184]

        В Германии был взят ряд патентов на образование пептидной связи из аминокислот, пептидов или их эфиров и а-ациламинотиоловых эфиров NHR X) H OSA, где R — алкил, аралкил, ацил или другая аминозащитная Группа, X — остаток типа, имеющегося в аминокислотах и пептидах, и А — алкильный, арильный, аралкильный или аналогичный нм остаток [347, 61, 362]. [c.267]

        В биосинтетических реакциях ацильные группы часто переносятся от амидов или сложных эфиров к различным акцепторам.

    Например, конечной стадией в образовании пептидных связей в процессе синтеза белка на рибосомах является перенос пептидильной группы, присоединенной при помощи эфирной связи к молекуле тРНК, к аминогруппе активированной аминокислоты (гл. 11, разд. Д,1). [c.116]

        Образование пептидной связи в случае дипептида является простым химическим процессом. Дипептид формально получается при отщеплении молекулы воды от амино- и карбоксильной групп двух аминокислот (рис. 2-3).

    Последовательное повторение этого процесса, казалось бы, должно привести к длинным пептидам и даже к белкам. Однако реализация этого приг нципа возможна только в жестких условиях неконтролируемой реакции. Основатель пептидной и белковой химии Э.

    Фишер в 1906 г. пйсал  [c.95]

        Вторая аминокислота Б (аминокомпонент) атакует активированный карбоксильный компонент аминогруппой с образованием пептидной связи. Незащищенная аминофункция карбоксильного компонента А тоже может реагировать, что приводит (рис.

    2-4) к нежелательным побочным продуктам — линейным и циклическим пептидам. Из этого следует вывод, что для однозначного течения пептидного синтеза следует временно блокировать все функциональные группы, не участвующие в образовании пептидной связи.

    [c.95]

        В первую очередь получают частично замещенные аминокислоты, при этом они одновременно теряют цвиттер-ионную структуру. Вторая ступень, собственно образование пептидной связи, протекает в две стадии. Сначала нужно активировать М-защишенный карбоксильный компонент.

    Затем происходит собственно образование пептидной связи, которое протекает либо одноступенчато (вместе с активированием), ли последовательно в следующую стадию. На третьей ступени защитные группы селективно отщепляются, причем полученные частично защищенные производные дипептидов могут использоваться для дальнейших синтезов как карбоксильные или аминокомпоненты.

    Само собой разумеется, что в случае синтеза дипептида обе защитные группы удаляются ошовременно. [c.96]

        Уже Бергман и др. интенсивно применяли Ы-ацетиламинокислоты для целенаправленного синтеза пептидов. Оптически активные исходные продукты для образования пептидной связи они получали ацетилированием эфиров аминокислот уксусным ангидридом и последующим омылением.

    Амидная группировка, выступающая в этом случае как защитная группа, структурно аналогична пептидной связи. Поэтому не было неожиданным, что селективное отщепление этого ацильного остатка не удавалось.

    Подобные эксперименты проводили еще Курциус с бензоильной группой и Фищер с хлорацетильной группой. [c.102]

        Азидный метод [232], введенный в пептидную химию Курциусом в 1902 г., до сих пор является одним из наиболее широко применяемых способов образования пептидной связи.

    С помощью этого метода Курциус синтезировал ряд N-бeнзoилиpoвaнныx пептидов, содержащих от двух до шести аминокислот. В качестве аминокомпонентов он использовал как аминокислоты и пептиды в водно-щелочной среде, так и эфиры аминокислот в органической фазе.

    С введением селективно отщепляемых Ы-защитных групп азид- [c.138]

    Источник: https://www.chem21.info/info/1338116/

    Пептидная связь — это… Что такое Пептидная связь?

    Схема образования пептидной связи.

    Пептидная связь — вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (—NH2) одной аминокислоты с α-карбоксильной группой (—СООН) другой аминокислоты.

    Из двух аминокислот (1) и (2) образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схеме рибосома генерирует и более длинные цепочки из аминокислот: полипептиды и белки. Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R.

    Свойства пептидной связи

    Как и в случае любых амидов, в пептидной связи за счет резонанса канонических структур связь C-N между углеродом карбонильной группы и атомом азота частично имеет характер двойной:

    Это проявляется, в частности, в уменьшении её длины до 1,33 ангстрема:

    Это обусловливает следующие свойства:

    • 4 атома связи (C, N, O и H) и 2 α-углерода находятся в одной плоскости. R-группы аминокислот и водороды при α-углеродах находятся вне этой плоскости.
    • H и O в пептидной связи, а также α-углероды двух аминокислот трансориентированы (транс-изомер более устойчив). В случае L-аминокислот, что имеет место во всех природных белках и пептидах, R-группы также трансориентированы.
    • Вращение вокруг связи C-N затруднено, возможно вращение вокруг С-С связи.

    Для обнаружения белков и пептидов, а также их количественного определения в растворе используют биуретовую реакцию.

    Ссылки

    Источник: https://dic.academic.ru/dic.nsf/ruwiki/6258

    Образование пептидной связи

    Первая пептидная связь возникает за счет реакции транспептидации, в ходе которой метионин от инициаторной тРНК переносится на a-аминогруппу аа-тРНК в А-центре с образованием дипептидил-тРНК. Катализирует пептидилтрансферазную реакцию рРНК большой субъединицы рибосомы.

    Транслокация. В ходе этой стадии за счет энергии GTP и при участии фактора элонгации EF2 рибосома перемещается на один кодон в направлении от 5'- к З'-концу мРНК. В результате дипептидил-тРНК из А-центра попадает в Р-центр, а в А-центре оказывается следующий кодон. тРНКМет
    покидает рибосому. Далее процесс продолжается по описанной схеме, повторяя стадии 1-»2-»3.

    Читайте также:  Как похудеть на 10 кг за месяц: самые эффективные диеты в домашних условиях

    Терминация трансляции происходит после включения в А-центр одного из кодонов терминации: UAG, UGA, UAA. При участии специальных белков —3 факторов терминации (RF1, RF2 и RF3) -происходит гидролитическое отщепление синтезированного полипептида от тРНК. тРНК высвобождается из рибосомы за счет гидролиза GTP, и «пустая» рибосома легко диссоциирует на субъединицы.

    В процессе трансляции малая и большая субъединицы рибосомы выполняют разные функции малая субъединица присоединяет мРНК и декодирует информацию с помощью тРНК и механизма транслокации, большая субъединица
    ответственна за образование пептидных связей. Основной вклад в организацию и проявление пептидилтрансферазной активности вносит рРНК.

    Много рибосом могут одновременно участвовать в трансляции одной мРНК. Каждая рибосома занимает участок, равный примерно 80 нуклеотидам мРНК. Таким образом, рибосомы располагаются на мРНК с интервалами около 100 нуклеотидов, образуя комплекс, называемый полисомой.

    Функционально активные белки образуются в результате посттрансляционных модификаций полипептидных цепей, синтезированных на рибосомах. Эти модификации включают:

    А. Частичный протеолиз.

    Б. Модификации аминокислот: карбоксилирование, фосфорилирование, йодирование, гидроксилирование, ацилирование и гликозилирование.

    В. Формирование пространственной структуры, или фолдинг, в котором принимают участие белки-шапероны, обеспечивающие правильную укладку полипептидной цепи.

    Г. Образование дисульфидных связей между остатками цистеина, участвующими в формировании трехмерной структуры белка.

    Д. Присоединение простетических групп.

    Е. Образование олигомерных структур, которое также осуществляется при участии шаперонов

    Подавление матричных биосинтезов может быть достигнуто либо путем структурной модификации матрицы и рибосомх, либо путем инактивации ферментов. Прекращение синтеза ДНК, РНК или белка вызывает гибель всех клеток, поэтому многие ингибиторы матричных биосинтезов являются ядами для организма человека.

    a-Аманитин — токсин, который содержится в теле белой поганки Amanita phalloides и ингибирует эукариотические РНК-полимеразы, в особенности РНК-полимеразу II.
    Энтеротоксин
    возбудителя дифтерии является специфическим ингибитором трансляции у эукариотов, блокрируя один из факторов элонгации.

    Антибиотики, подавляющие процесс транскрипции и трансляции и специфичные в отношении белоксинтезирующей системы прокариотов, могут использоваться как антибактериальные препараты, а антибиотики, нарушающие матричную функцию ДНК, нашли применение при лечении злокачественных новообразований и являются противоопухолевыми препаратами (например, доксорубицин, дауномицин).

    В последние годы проводятся исследования по созданию препаратов, обеспечивающих доставку ингибитора только в опухолевые клетки. Это достигается связыванием цитотоксических антибиотиков с белками, рецепторы к которым имеются главным образом на опухолевых клетках.

    Некоторые антибиотики —
    рифампицин, эритромицин, тетрациклин
    и др. — селективно ингибируют синтез РНК или белка в бактериальных клетках, практически не влияя на белковый синтез в клетках млекопитающих.

    Высокая избирательность этой группы соединений объясняется различиями в структуре РНК-полимераз и рибосом эукариотических и прокариотических клеток.

    Например, эритромицин ингибирует транслокацию, тетрациклин —  связывание аа-тРНК в А- центре.

    Многие вирусы, например вирусы оспы, гриппа и полиомиелита, попадая в организм человека, выключают синтез ДНК, РНК и белков в клетках организма хозяина и переключают РНК и белок-синтезирующий аппарат на репродукцию вирусных нуклеиновых кислот и белков.

    Защиту организма от вирусных инфекций обеспечивают интерфероны. Семейство этих белков синтезируется в клетках эукариотов в ответ на заражение вирусом. Они через торможение фактора инициации eIF2 прекращает работу белоксинтезирующего аппарата. Интерфероны повышают активность рибонуклеазы, расщепляющей матричные и рибосомные РНК клетки, что также снижает синтез белка в инфицированных клетках.

                Адаптация организмов к различным воздействиям окружающей среды осуществляется, в частности, путем изменения экспрессии (активности) генов.


    Этот процесс, в деталях изученный на бактериях и вирусах, включает взаимодействие специфических белков с участками ДНК в непосредственной близости от стартового участка транскрипции.

    Эукариотические клетки используют этот же принцип, хотя в регуляции экспрессии генов реализуются и некоторые другие механизмы.

    У прокариотов определенные белки связываются с регуляторными участками оперона и предотвращают или усиливают связывание РНК-полимеразы с промотором.

    Если оперон регулируется по механизму индукции (например, лактозный оперон), то в отсутствие индуктора (лактозы) белок-репрессор связан с оператором.

      Поскольку участки оператора и промотора перекрываются, то присоединение репрессора к оператору препятствует связыванию РНК-полимеразы с промотором и транскрипция структурных генов оперона не идет.

    Когда индуктор появляется в среде, он присоединяется к белку- репрессору, изменяет его конформацию и снижает сродство к оператору. РНК-полимераза связывается с промотором и транскрибирует структурные гены .

    При регуляции оперона по механизму репрессии (например, гистидиновый или триптофановый опероны) белок-репрессор не имеет сродства к оператору.

    Когда к белку-репрессору присоединится небольшая молекула — корепрессор (гистидин или триптофан), то в результате происходящих в белковой молекуле конформационных изменений комплекс белок-репрессор—корепрессор приобретает сродство к оператору и прекращает транскрипцию.

    • В клетках млекопитающих существуют два вида регуляции биосинтеза белков:
    • • кратковременная, обеспечивающая адаптацию организма к возможным изменениям окружающей среды;
    • • длительная, стабильная, определяющая дифференцировку клеток и разный белковый состав органов и тканей.

    В хроматине разных органов и тканей наряду с огромными транскрипционно неактивными или стабильно репрессированными участками имеются активные или потенциально активные участки.

    За малым исключением (лимфоциты), каждая клетка организма содержит один и тот же набор генов.

    Существование специализированных органов и тканей зависит от дифференциальной экспрессии генов, это означает, что в дифференцировании клетках разных тканей транскрибируются разные участки хроматина.

    Рис.4 Адаптивная регуляция транскрипции.

    Адаптивная регуляция у высших организмов отличается от регуляции транскрипции у прокариотов многообразием сигналов, которые контролируют 1. начало процесса на молекуле ДНК, 2. частоту, с которой он происходит.

    ТАТА-участок промотора присоединяет ТАТА-связывающий белок (ТАТА-фактор), факторы транскрипции А и В, которые обеспечивают взаимодействие с РНК-полимеразой и определяют стартовую точку транскрипции (рис 4).

    Минимальный синтез мРНК становится возможным после связывания РНК-полимеразы с транскрипционными факторами F, Е, Н.

    Если, кроме указанных компонентов, с ТАТА-связывающим белком образуют комплекс белки, присоединенные к регуляторным участкам ДНК, то скорость транскрипции меняется.

    Она возрастет, если это будут белки-активаторы, обеспечивающие взаимодействие с энхансерами (усилителями), и снижается, если к ТАТА-связывающему белку присоединится белок, взаимодействующий с участком сайленсера (тушителя транскрипции).

    Регуляторные зоны ДНК — энхансеры и сайленсеры — различны по числу и расположению на молекуле ДНК для разных генов в разных тканях, т.е. являются тканеспецифическими характеристиками. Они могут располагаться за тысячи нуклеотидных пар от стартовой точки транскрипции перед, после или внутри гена, связывать комплексы белков с метаболитами или гормонами и влиять на конформацию гена.

    Естественный отбор и биологическая эволюция невозможны без генетической изменчивости, которая возникает за счет мутаций и рекомбинаций в процессе мейоза. В последнем случае происходит обмен участками ДНК между гомологичными хромосомами родителей.

    Мутации — это нерепарированные изменения первичной структуры ДНК, появляющиеся в молекуле в ответ на дефекты в paботе ДНК-полимераз или ДНК-репарирующей системы, воздействия внешней и внутренней среды. 2.

    Точечные мутации в основном бывают трех видов:

    • замены (это наиболее распространенный тип повреждений молекулы ДНК; (Различают 2 типа замены оснований: транзиции и трансверсии.   Под транзициями понимают замену пуриновых оснований на пуриновые и пиримидиновых на пиримидиновые (Т—С и A—G).

    Трансверсиями  называют замену пуриновых оснований на пиримидиновые и наоборот. Другой причиной замены оснований является ошибочное включение в цепь ДНК химически измененное основание (или модифицированное основание).

    Следует отметить, что генные мутации по типу замены оснований происходят либо до репликации, либо в процессе репликации. Если эти изменения не исправляются в процессе репарации, то они становятся достоянием сначала одной, а затем и двух цепей ДНК.

    Следовательно, источником возникновения этой категории мутаций являются ошибки в процессах репликации или репарации).

    1. • вставки;
    2. • делеции (или выпадения) нуклеотидов
    3. Каждый тип мутации вызывает разные последствия. Так, замена нуклеотида:
    4. • может быть «молчащей» и не проявиться в белке, если кодирующий триплет, в котором находится мутантный нуклеотид, из-за вырожденности кода обеспечивает включение в белок той же аминокислоты, что исходный кодон;

    • может сопровождаться включением в белок одной измененной аминокислоты (миссенс-мутация). Такого типа мутации возникают при действии алкилирующих агентов.

    ( Алкильная группа присоединяется к N7 пуринового кольца гуанина, изменяя его ионизацию и характер связывания с другим нуклеотидом в комплементарной паре.

    В результате против алкилированного гуанина встает тимин, а следовательно, в последующем поколении параG-C заменяется А-Т).

    • может привести к образованию «терминирующего» кодона
    (нонсенс-мутация),
    на котором работа белоксинтезирующего аппарата будет остановлена и образуется укороченный вариант белка.

    Делеции и вставки также приводят к неоднозначным результатам:

    • если включается или выпадает один нуклеотид или участок ДНК, в котором число нуклеотидов не кратно 3, то происходит сдвиг рамки считывания информации и при трансляции вся информация, расположенная за местом мутации, читается неверно. Возникает белок, у которого за местом мутации расположена случайная последовательность аминокислот. Такого типа мутации вызывают вещества, ин-теркалирующие между азотистыми основаниями молекулы ДНК;

    • если выпадает или включается в ДНК участок с длиной цепи, кратной 3, то сдвига рамки считывания информации не происходит (деления
    или вставка без сдвига рамки считывания информации).
    Белок, который зашифрован такой матрицей, будет либо укорочен (при делении), либо удлинен (при вставке) на одну или несколько аминокислот.

    3. В большинстве случаев мутации влияют на экспрессию или структуру генов, что проявляется в снижении количества или изменении структуры белкового продукта, а следовательно, и его функциональной активности. Иногда снижение или полное отсутствие белка является результатом мутаций в регуляторных участках генов.

    Следовательно, при генных мутациях  схема такова: в результате генной мутации (молекулярный дефект) возникает патологический первичный эффект, это приводит к каскаду биохимических нарушений в клетках, органе и организме. Такая последовательность событий лежит в основе генных болезней. Отмечено 4 варианта патологических  первичных  эффектов. 

    Первый  вариант  связан  с  выработкой избыточного количества продукта вследствие усиления генной активности.

    Второй вариант связан с выработкой аномальных белков.  Это приводит к нарушению в той системе, работу которой обеспечивает данных белок.

    Например, (вследствие  замены  одной  аминокислоты)  при  серповидно-клеточной  анемии синтезируется     аномальный  гемоглобин,  который  обладает  пониженной растворимостью, способностью к полимеризации. В результате при недостатке кислорода такой гемоглобин быстро кристаллизуется, эритроциты приобретают форму серпа, быстро склеиваются, что приводит к закупорке капилляров.

    Третий вариант связан с отсутствием первичных продуктов. Это наиболее распространенный вариант. В результате отсутствия того или иного белка (чаще всего фермента) биохимические реакции с его участием не проходят. Это приводит к накоплению продуктов-предшественников, чаще всего токсичных.

    Например, при фенилкетонурии не происходит превращение фенилаланина в тирозин из-за отсутствия соответствующего фермента. В результате нарушается синтез миелиновой оболочки в аксонах ЦНС, на уровне организма  развивается    тяжелая форма умственной недостаточности.

    Другим примером отсутствия белков является дефицит ферментов системы репарации или репликации. Это приводит к развитию злокачественных новообразований.

    Четвертый вариант — это выработка уменьшенного количества продукта, например, белков. Это приводит к их недостатку в организме и к отклонениям в обмене веществ.

    Источник: https://biohimist.ru/podborka-lektsij-po-biokhimii/49-lekcii-sintez-nukleinovyh-kislot-i-belkov/791-obrazovanie-peptidnoj-svjazi.html

    Ссылка на основную публикацию